Ten important roles for academic leaders to promote equity, diversity, and inclusion in data science
Our new editorial on equity, diversity, and inclusion in data science is out in BioData Mining.
From the Artificial Intelligence Innovation Lab at Cedars-Sinai Medical Center (www.epistasis.org)
Our new editorial on equity, diversity, and inclusion in data science is out in BioData Mining.
Moore JH. Ten important roles for academic leaders in data science. BioData Min. 2020 Oct 26;13:18. doi: 10.1186/s13040-020-00228-5. PMID: 33117434; PMCID: PMC7586691. [PubMed] [BioData Mining]
Abstract
Data science has emerged as an important discipline in the era of big data and biological and biomedical data mining. As such, we have seen a rapid increase in the number of data science departments, research centers, and schools. We review here ten important leadership roles for a successful academic data science chair, director, or dean. These roles include the visionary, executive, cheerleader, manager, enforcer, subordinate, educator, entrepreneur, mentor, and communicator. Examples specific to leadership in data science are given for each role.
Li R, Chen Y, Ritchie MD, Moore JH. Electronic health records and polygenic risk scores for predicting disease risk. Nat Rev Genet. 2020 Aug;21(8):493-502. doi: 10.1038/s41576-020-0224-1. Epub 2020 Mar 31. PMID: 32235907. [PubMed] [Nature Reviews]
Abstract
Accurate prediction of disease risk based on the genetic make-up of an individual is essential for effective prevention and personalized treatment. Nevertheless, to date, individual genetic variants from genome-wide association studies have achieved only moderate prediction of disease risk. The aggregation of genetic variants under a polygenic model shows promising improvements in prediction accuracies. Increasingly, electronic health records (EHRs) are being linked to patient genetic data in biobanks, which provides new opportunities for developing and applying polygenic risk scores in the clinic, to systematically examine and evaluate patient susceptibilities to disease. However, the heterogeneous nature of EHR data brings forth many practical challenges along every step of designing and implementing risk prediction strategies. In this Review, we present the unique considerations for using genotype and phenotype data from biobank-linked EHRs for polygenic risk prediction.
A 12-minute overview of my artificial intelligence and machine learning research program [YouTube]
Moore JH, Olson RS, Schmitt P, Chen Y, Manduchi E. How Computational Experiments Can Improve Our Understanding of the Genetic Architecture of Common Human Diseases. Artif Life. 2020 Winter;26(1):23-37. doi: 10.1162/artl_a_00308. Epub 2020 Feb 6. PMID: 32027528. [PubMed] [Artificial Life]
Abstract
Susceptibility to common human diseases such as cancer is influenced by many genetic and environmental factors that work together in a complex manner. The state of the art is to perform a genome-wide association study (GWAS) that measures millions of single-nucleotide polymorphisms (SNPs) throughout the genome followed by a one-SNP-at-a-time statistical analysis to detect univariate associations. This approach has identified thousands of genetic risk factors for hundreds of diseases. However, the genetic risk factors detected have very small effect sizes and collectively explain very little of the overall heritability of the disease. Nonetheless, it is assumed that the genetic component of risk is due to many independent risk factors that contribute additively. The fact that many genetic risk factors with small effects can be detected is taken as evidence to support this notion. It is our working hypothesis that the genetic architecture of common diseases is partly driven by non-additive interactions. To test this hypothesis, we developed a heuristic simulation-based method for conducting experiments about the complexity of genetic architecture. We show that a genetic architecture driven by complex interactions is highly consistent with the magnitude and distribution of univariate effects seen in real data. We compare our results with measures of univariate and interaction effects from two large-scale GWASs of sporadic breast cancer and find evidence to support our hypothesis that is consistent with the results of our computational experiment.